
SpZip: Architectural Support for Effective Data Compression
In Irregular Applications Yifan Yang, Joel S. Emer, Daniel Sanchez

{yifany, emer, sanchez}@csail.mit.edu

4. SpZip Design1. Motivation

2. Overview

3. Dataflow Configuration

• Irregular applications, such as graph analytics and sparse
linear algebra, are important workload domains

• Irregular applications are often memory bound

• Data compression is an attractive approach to accelerate
irregular applications

5. Evaluation

Multiple data structure traversal configuration in PageRank

Sparse matrix traversal configuration

Prior Work

Hardware compression
units for sequentially
accessed long streams

e.g., IBM z15 [ISCA’20]

✘
Limited compression gain
on short streams

Compressed memory
hierarchies support
random accesses

e.g., VSC [ISCA’04]

✘
Data decompression increases
critical path latency

This work is optimized for indirect, data-dependent accesses
to short streams

• Specialized hw to
accelerate data access and
decompression

• hw can be configured
using a set of composable

0 2 4 5 7

1,a 2,b 0,c 2,d 3,e 1,f 2,g

offsets

rows

0 1 2 3
0
1
2
3

ro
w

s

cols Compressed Sparse Row (CSR) format
0 1 2 3 4

0 a b 0
c 0 d 0
0 0 0 e
0 f g 0 {coordinate, value} pairs

OffsetsQ
5

InputQ

0,c 2,b 1,a

RowsQ

Access0:5

7 2,doffsets[4]

Memory

Access2:4

rows[3]

Accessing
offsets

Accessing
rows

Row-compressed sparse matrix traversal configuration

CSR with individually
compressed rows

row0 row1 row2 row3

offsets

rows

0 1 2 3 4

compressed

compressed

Decompress

Compressed
RowsQ

OffsetsQInputQ

Access Access

RowsQ

…

LLC

Main Memory

L2

Core

Fetcher Compressor

L2

Core

Fetcher Compressor

accelerates data structure traversal and

decompression

Fetcher

Access
Unit

Decomp.
Unit

Scheduler
ctxt 0 ctxt k…

L2

Scratchpadq1 q2… qnq0

Operators are
time-multiplexed
on the same
physical unit

SpZip improves performance and reduces traffic

in Fetcher

in Core

for i in range(numRows):
for {col, val} in decompress(

rows[offsets[i]:
offsets[i+1]]):

visit({col, val})

Core

Traversal Pseudocode

3.3x

Access Access Decompress

Fetcher Core

Decompress

Compressed
NeighsQ

OffsetsQInputQ

Access Access

NeighsQ

Compressed Adjacency Matrix

Access
ContribsQSource Vertex Data

Access
Prefetch Destination
Vertex Data

Core
def PRIter(Graph g, Array scores, Array contribs)
for src in range(g.numVertices):
for dst in decompress(g.neighs[g.offsets[src]:

g.offsets[src+1]]):
scores[dst] += contribs[src]

in in FetcherCore

operators expressing various traversal patterns

PageRank (PR) Pseudocode

Decoupled execution

hiding access and

decompression latency

Programmable hw

handling various

traversal patterns

Compressor

Fetcher

compresses newly generated data before

storing it off-chip

