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4. SpZip Design1. Motivation

2. Overview

3. Dataflow Configuration

• Irregular applications, such as graph analytics and sparse 
linear algebra, are important workload domains

• Irregular applications are often memory bound

• Data compression is an attractive approach to accelerate 
irregular applications

5. Evaluation

Multiple data structure traversal configuration in PageRank

Sparse matrix traversal configuration

Prior Work

Hardware compression 
units for sequentially 
accessed long streams

e.g., IBM z15 [ISCA’20]

✘
Limited compression gain 
on short streams

Compressed memory 
hierarchies support 
random accesses

e.g., VSC [ISCA’04]

✘
Data decompression increases 
critical path latency

This work is optimized for indirect, data-dependent accesses 
to short streams

• Specialized hw to 
accelerate data access and 
decompression

• hw can be configured 
using a set of composable
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Row-compressed sparse matrix traversal configuration

CSR with individually
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SpZip improves performance and reduces traffic
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for i in range(numRows):
for {col, val} in decompress(

rows[offsets[i]:
offsets[i+1]]):

visit({col, val})

Core

Traversal Pseudocode
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def PRIter(Graph g, Array scores, Array contribs)
for src in range(g.numVertices):
for dst in decompress(g.neighs[g.offsets[src]:

g.offsets[src+1]]):
scores[dst] += contribs[src]

in in FetcherCore

operators expressing various traversal patterns

PageRank (PR) Pseudocode

Decoupled execution 

hiding access and 

decompression latency

Programmable hw

handling various 

traversal patterns

Compressor

Fetcher

compresses newly generated data before 

storing it off-chip


